Office of Satellite and Product Operations Environmental Satellite Processing Center

Leaf Area Index External Users' Manual

Version 1.2 April 17, 2025

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Satellite and Product Operations

Authors

Susan Haworth (OCS)

Updated by Jeffrey Augenbaum (OMS, ERT)

Approval Page

Enviro Leaf A	onmental Satel Area Index Ext	lite Processing ternal Users'	g Center Manual
GROUP: OMS	Date: 04/22/2025	GROUP: OSPO	Date: 05/16/2025
Jeffrey Augenbaum, Lea	d Programmer	Hanjun Ding, Product Ai	rea Lead
GROUP: OMS	Date: 05/15/2025	J. 8, 1997	
Clay Davannort Product	a Managar		

Changes/Revisions Record

This external users' manual is changed as required to reflect system, operational, or organizational changes. Modifications made to this document are recorded in the Changes/Revisions Record below. This record will be maintained throughout the life of the document.

Version Number	Date	Description of Change/Revision	Section/Pages Affected	Changes Made by Name/Title/ Organization
1.0	03/2025	Initial version	All	Susan Haworth
1.1	04/2025	Added links to product monitoring, visualization	3.5, 3.5.1	Jeff Augenbaum
1.2	04/17/2025	Transfer contents to latest template, perform minor copy editing and formatting	All	Hannah Bowie, Technical Writer, ERT
1.2	04/18/2025	Quality Assurance	All	Clint Sherwood, Quality Assurance Manager, ERT

Preface

This document comprises the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS), Office of Satellite and Product Operations (OSPO), publication of this Leaf Area Index (LAI) External Users' Manual (EUM). This document reflects current operations for the DOC/NOAA/NESDIS Environmental Satellite Processing Center (ESPC) (NOAA5045) information technology systems. This document describes the established ESPC procedures for external users of LAI in accordance with Federal, DOC, NOAA, NESDIS and OSPO requirements.

Future updates and revisions to this document will be produced and controlled by DOC/NOAA/NESDIS for ESPC information technology systems.

The published version of this document can be found at the OSPO SharePoint Products Library.

Table of Contents

1.	Pı	roduc	ts 1	l
	1.1.	Prod	uct Overview1	l
	1.	1.1.	Product Requirements	L
	1.	1.2.	Product Team	L
	1.	1.3.	Product Description	2
	1.2.	Prod	uct History	2
	1.3.	Prod	uct Access	2
2.	A	lgorit	hm6	5
	2.1.	Algo	rithm Overview	5
	2.2.	Input	t Satellite Data	7
	2.	2.1.	Satellite Instrument Overview	7
	2.	2.2.	Satellite Data Preprocessing Overview	3
	2.	2.3.	Input Satellite Data Description	3
	2.3.	Input	t Ancillary Data9)
3.	Pe	erforr	nance)
	3.1.	Prod	uct Testing10)
	3.	1.1.	Test Data Description10)
	3.	1.2.	Unit Test Plans)
	3.2.	Prod	uct Accuracy10)
	3.	2.1.	Test Results)
	3.	2.2.	Product Accuracy)
	3.3.	Prod	uct Quality Output)
	3.4.	Exter	nal Product Tools)
	3.5.	Outp	ut Files11	l
	3.	5.1.	Product Monitoring and Visualization11	L
4.	Pı	roduc	t Status11	l
	4.1.	Oper	ations Documentation11	1
	4.2.	Main	tenance History11	1
5.	A	crony	ms12	2

List of Tables

Table 1-1 - LAI Product Requirements	1
Table 1-2 - Product Team Members	1
Table 1-3 - LAI Output File Naming Conventions	3
Table 1-4 - LAI NetCDF4 Output File Description	3
Table 1-5 - LAI NetCDF4 Output File Metadata	3
Table 2-1 - VIIRS Surface Reflective Bands and Configurations	8
Table 2-2 - Primary Input File Naming Conventions	8

List of Figures

Figure 2-1 - LAI Processing Architecture	7
8	

1. Products

1.1. Product Overview

The Leaf Area Index (LAI) External User Manual describes the LAI products and output files. The LAI product system was developed at the Center for Satellite Applications and Research (STAR) and was implemented into operations at the NOAA Office of Satellite and Product Operations (OSPO).

The intended users of the External User Manual (EUM) are end users of the output products and files and the product verification and validation (V&V) teams. The purpose of the EUM is to provide product users and product testers with information that will enable them to acquire the product, understand its features, and use the data. External users are defined as those users who do not have direct access to the processing system.

1.1.1. Product Requirements

The requirements for the LAI product are listed in Table 1-1. For more details concerning the algorithm package's requirements, refer to the ATBD for the algorithm [Leaf Area Index (LAI) Algorithm Theoretical Basis Document (v1.0, February 2023)].

Attribute	Threshold
Geographic Coverage	Clear sky condition, land surface
Vertical Coverage	N/A
Refresh Rate	8-day
Horizontal Cell Size	1 km
Mapping Uncertainty	1 km
Measurement Range	0-10
Accuracy	15%
Precision	18%
Uncertainty	20%

 Table 1-1 - LAI Product Requirements

1.1.2. Product Team

The product team consists of members from several organizations. Information including the team member's organizations, roles, and contact information can be found in Table 1-2.

 Table 1-2 - Product Team Members

Team Member	Organization	Role	Contact Info
Walter Wolf	OCS	OCS Product Management Division	walter.wolf@noaa.gov
		Chief	
Yunyue Yu	NESDIS	Science Team Lead	yunyue.yu@noaa.gov
Yuan Zhou	NESDIS	Science Team	yuan.zhou@noaa.gov
Hanjun Ding	OSPO	OSPO PAL	hanjun.ding@noaa.gov
Isabel Jones	NESDIS	PPM	isabel.jones@noaa.gov
Curtiss Burnett	NESDIS	PIB	curtiss.burnett@noaa.gov
Priyanka Roy	OCS	ASSISTT Management Team	priyanka.roy@noaa.gov
Letitia (Tish)	OCS	ASSISTT Integration Team Lead	letitia.soulliard@noaa.gov
Soulliard			
Shukming Wu	OCS	ASSISTT Integration Team Lead	shukming.wu@noaa.gov
Mike Butler	OCS	ASSISTT Integration Team Lead	michael.butler@noaa.gov

Team Member	Organization	Role	Contact Info
Zhenpeng Li	OCS	ASSISTT Integration Team Lead	zhengpeng.li@noaa.gov
Dongsheng Wu	OCS	ASSISTT Integration Team	dongsheng.wu@noaa.gov
Brandon Laufer	OCS	ASSISTT Integration Team	brandon.laufer@noaa.gov
Yunhui Zhao	OCS	ASSISTT Configuration Management	yunhui.zhao@noaa.gov
		Team Lead	
Susan Haworth	OCS	ASSISTT Technical Writer	susan.haworth@noaa.gov
Tracey Dorian	OCS	ASSISTT Lifecycle QA Team Lead	tracey.dorian@noaa.gov
Mingming Yao	OCS	ASSISTT Lifecycle QA Team	mingming.yao@noaa.gov
Hua Xie	OCS	ASSISTT Science QA Team Lead	hua.xie@noaa.gov

1.1.3. Product Description

Leaf Area Index (LAI) is defined as one half the total green leaf area per unit horizontal ground surface area. It is an essential climate variable driving water fluxes, carbon fluxes, and energy exchanges, playing an important role in the models of the climate, hydrology, and ecology. As a fundamental attribute of vegetation, LAI is an essential climate variable.

Leaf Area Index (LAI) uses VIIRS Surface Reflectance as the primary input data and geometry data (GITCO) to produce two intermediate products:

- Daily green leaf coverage value (Daily LAI), and
- Weekly green leaf coverage value (Weekly LAI).

Both Daily and Weekly LAI are saved and used to create the final product: a global gap-free LAI end product at 1 km resolution with a step of 8-day.

The LAI product is for daytime observations only.

LAI can benefit users in the following ways:

- Substantially improves the prediction accuracy of NCEP global and mesoscale models (GFS and NAM).
- Substantially improves the impact over land of satellite-measured leaf area index in surfacesensitive satellite channels in the data assimilation in NCEP global and regional data assimilation systems (GDAS and NDAS).
- Provides an important input for many ecological and hydrological models.

1.2. Product History

The final version of LAI, which will be implemented in the NCCF, was delivered in January 2025.

1.3. Product Access

Table 1-3 lists information for the final LAI output files. Intermediate output product files are not included. For more information concerning intermediate output files, refer to the LAI System Maintenance Manual (SMM).

Description of File	Type of File	Naming Convention
Weekly Global LAI	NETCDF4	WKL-LAI-GLB_v1r0_ <sat>_s<yyyymmddhhmmssf>_ e<yyyymmddhhmmssf>_c<yyyymmddhhmmssf>.nc</yyyymmddhhmmssf></yyyymmddhhmmssf></yyyymmddhhmmssf></sat>

Table 1-3 - LAI Output File Naming Conventions

Where:

<sat></sat>	\rightarrow	The satellite source: npp, n20, or n21.
s< YYYYmmddHHMMSSf >	\rightarrow	The start timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second, and 1-digit microseconds format.
e< YYYYmmddHHMMSSf >	\rightarrow	The end timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second, and 1-digit microseconds format.
c< YYYYmmddHHMMSSf >	\rightarrow	The creation timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.

The contents of the NetCDF output file are described in Table 1-4.

on

Variable	Туре	Description	Dim	Units	Range
LAI	16-bit integer	8-Day Global Leaf Area Index	20000 x 40000	m2/m2	N/A
quality_information	String	Total number of retrievals,	1	N/A	N/A
		percentage of optimal retrievals,			
		percentage of sub optimal			
		retrievals, percentage of bad			
		retrievals			

The metadata for the NetCDF output file is described in Table 1-5.

 Table 1-5 - LAI NetCDF4 Output File Metadata

Attribute	Description	Туре	Array Size
Conventions	A text string identifying the NetCDF conventions followed.	String	Scalar
_NCProperties	NetCDF and HDF version numbers (automatically generated).	String	Scalar
cdm_data_type	The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS.	String	Scalar

Attribute	Description	Туре	Array Size
creator_email	The email address of the person (or other	String	Scalar
	creator type specified by the creator_type		
	attribute) principally responsible for creating		
	this data.		
creator_name	The name of the person (or other creator type,	String	Scalar
	such as a RDAC, specified by the creator_type		
	attribute) principally responsible for creating		
	this data.		G 1
creator_url	The URL of the of the person (or other creator	String	Scalar
	type specified by the creator_type attribute)		
data areatad	The data on which this varian of the data was	Stains	Sector
date_created	reated	String	Scalar
day night data flag	Describes sunlight conditions for observation:	String	Scalar
uay_mgm_uata_mag	day night or both	Sung	Scalal
geospatial lat max	Describes a simple upper latitude limit: may be	64-bit floating-	1
geosputiui_iui_iiux	part of a 2- or 3-dimensional bounding region	point	1
	Specifies the northernmost latitude covered by	Point	
	the dataset.		
geospatial lat min	Describes a simple lower latitude limit; may be	64-bit floating-	1
	part of a 2- or 3-dimensional bounding region.	point	
	Specifies the southernmost latitude covered by	1	
	the dataset.		
geospatial_lat_resolution	Information about the targeted spacing of	String	Scalar
	points in latitude.		
geospatial_lat_units	Units for the latitude axis described in	String	Scalar
	geospatial_lat_min and geospatial_lat_max		
	attributes.		
geospatial_lon_max	Describes a simple longitude limit; may be part	64-bit floating-	1
	of a 2- or 3-dimensional bounding region.	point	
	specifies the easternmost longitude covered by		
geospatial lon min	Describes a simple longitude limit: may be part	64 bit floating	1
geospatiar_ion_inin	of a 2- or 3-dimensional bounding region	noint	1
	Specifies the westernmost longitude covered	point	
	by the dataset.		
geospatial lon resolution	Information about the targeted spacing of	String	Scalar
6 I I I I I I I I I I I I I I I I I I I	points in longitude.	6	
geospatial_lon_units	Units for the longitude axis described in	String	Scalar
	geospatial_lon_min and geospatial_lon_max	0	
	attributes.		
History	Provides an audit trail for modifications to the	String	Scalar
	original data.		
Id	An identifier for the data set, provided by and	String	Scalar
	unique within its naming authority.		
institution	The name of the institution principally	String	Scalar
• .	responsible for originating this data.	g. :	0.1
instrument	Name of the contributing instrument(s) or	String	Scalar
	sensor(s) used to create this data set or product.		

Attribute	Description	Туре	Array Size
keywords	A comma-separated list of key words and/or	String	Scalar
5	phrases. Keywords may be common words or	e	
	phrases, terms from a controlled vocabulary		
	(GCMD is often used), or URIs for terms from		
	a controlled vocabulary.		
metadata_link	A URL that gives the location of more	String	Scalar
	complete metadata.		
naming_authority	The organization that provides the initial id for	String	Scalar
	the dataset.		
Platform	Name of the platform(s) that supported the	String	Scalar
	sensor data used to create this data set or		
	product. Platforms can be of any type,		
	including satellite, ship, station, aircraft or		
	other.	a . :	G 1
processing_level	A textual description of the processing (or	String	Scalar
	quality control) level of the data. Options are:		
1	L2P, L3U, L3C, L3S, L4 and GMPE.		0.1
production_environment	Processing string responsible for generating	String	Scalar
production site	Drocossing site for the product	String	Scolor
Project	The name of the project(a) principally	String	Scalar
Floject	responsible for originating this data	Sung	Scalal
publisher email	The amail address of the person (or other	String	Scolor
puolisiiei_einaii	antity specified by the publisher type attribute)	Sumg	Scalai
	responsible for publishing the data file or		
	product to users, with its current metadata and		
	format		
publisher name	The name of the person (or other entity	String	Scalar
Puchaner_name	specified by the publisher type attribute)	Sumg	S Value
	responsible for publishing the data file or		
	product to users, with its current metadata and		
	format.		
publisher_url	The URL of the person (or other entity	String	Scalar
-	specified by the publisher_type attribute)		
	responsible for publishing the data file or		
	product to users, with its current metadata and		
	format.		
Source	The method of production of the original data.	String	Scalar
standard_name_vocabulary	The name and version of the controlled	String	Scalar
	vocabulary from which variable standard		
	names are taken.		
summary	A paragraph describing the dataset, analogous	String	Scalar
	to an abstract for a paper.		
time_coverage_end	Describes the time of the last data point in the	String	Scalar
	data set.		
time_coverage_start	Describes the time of the first data point in the	String	Scalar
	data set.	g. :	G 1
1 itie	A snort phrase or sentence describing the	String	Scalar
1	l dataset.	1	1

2. Algorithm

2.1. Algorithm Overview

Satellite LAI datasets, recorded over the past two decades, have been utilized extensively across various applications. Leveraging the legacy of established satellite products like the Moderate Resolution Imaging Spectroradiometer (MODIS), Global Land Surface Satellite (GLASS), and Geoland2/BioPar (GEOV2) LAI products, a data-driven methodology has been developed to obtain near-real-time LAI from VIIRS observations. Prior to implementation, a machine learning algorithm is tuned and trained based on a comprehensive suite of representative datasets.

The VIIRS LAI product is designed to be a temporally smoothed, global, gap-free dataset. The operational procedure is segmented into three phases, as depicted in Figure 2-1. The first two steps are daily processing, with up to 8 days' data being sustained for the weekly processing, which will be run every 8 days.

- 1. **Daily Surface Reflectance Generation**: Utilizing the VIIRS gridding tool, granule data is mapped onto a global grid in a sinusoidal projection. The surface reflectance (SR) compositing process then identifies and selects the highest quality SR and corresponding angles for each grid cell.
- 2. **Daily LAI Retrieval**: A previously trained machine learning algorithm performs the clear-sky LAI retrieval, leveraging the daily SR together with auxiliary data.
- 3. **8-Day LAI Compositing and Post-Processing**: From the daily LAI outputs, the optimal quality LAI is chosen for each 8-day interval. Subsequently, a temporal smoothing and gap-filling (TSGF) procedure is applied to produce the final, gap-free product.

Figure 2-1 - LAI Processing Architecture

2.2. Input Satellite Data

The LAI algorithm primarily uses the data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) platform and on subsequent satellites of the Joint Polar Satellite System (JPSS).

Primary and backup data sources are determined by NOAA.

2.2.1. Satellite Instrument Overview

Table 2-1 provides detailed information about the surface reflective bands and configurations for VIIRS.

VIIRS Band	Wavelength (µm)	Bandwidth (µm)	Signal-to-Noise Ratio (SNR)	Spatial Resolution (m)
M1	0.412	0.402-0.422	352/316	
M2	0.445	0.436-0.454	380/409	
M3	0.488	0.478-0.488	416/414	
M4	0.555	0.545-0.565	362/315	
M5	0.672	0.662-0.682	242/360	750m
M7	0.865	0.846-0.885	215/340	
M8	1.240	1.23-1.25	74	
M10	1.61	1.58-1.64	83	
M11	2.25	2.23-2.28	10	
I1	0.64	0.6-0.68	119	
I2	0.865	0.85-0.88	150	375m
I3	1.61	1.58-1.64	6	

Table 2-1	- VIIRS Surfac	e Reflective Ban	ds and Configurations
-----------	----------------	------------------	-----------------------

2.2.2. Satellite Data Preprocessing Overview

No preprocessing is performed on satellite data for the LAI products. The LAI CCAP accepts the satellite data as input in the format from NCCF.

2.2.3. Input Satellite Data Description

Information concerning the file naming conventions associated with the primary input data for the LAI algorithm package is listed in the following tables.

Table 2-2 lists information for the LAI input files.

Description of File	Type of File	Naming Convention
L1B VIIRS	Primary	GITCO_ <sat>_d<yyyymmdd>_t<hhmmssf>_</hhmmssf></yyyymmdd></sat>
Geometry	Input	e <hhmmssf>_b<orbit>_c<yyyymmddhhmmsssssss>_<source/>.h5</yyyymmddhhmmsssssss></orbit></hhmmssf>
L2 VIIRS Surface	Primary	SurfRefl_v <x>r<y>_<sat>_s<yyyymmddhhmmssf>_</yyyymmddhhmmssf></sat></y></x>
Reflectance	Input	e <yyyymmddhhmmssf>_c<yyyymmddhhmmssf>.nc</yyyymmddhhmmssf></yyyymmddhhmmssf>

Where:

<sat></sat>	\rightarrow	The satellite source: npp, n20, or n21.
d <yyyymmdd></yyyymmdd>	\rightarrow	The date of the start of the granule in 4-digit year, 2-digit month, and 2-digit day format.
t <hhmmssf></hhmmssf>	\rightarrow	The start time of the granule in 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.

e <hhmmssf></hhmmssf>	\rightarrow	The end time of the granule in 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.
<orbit></orbit>	\rightarrow	The satellite orbit number.
c <yyyymmddhhmmssssssss></yyyymmddhhmmssssssss>	\rightarrow	The creation timestamp for the granule in 4- digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second, and 6-digit microseconds format.
<source/>	\rightarrow	The source of the file, including, but not limited to, noac_ops and oeac_ops.
<x></x>	\rightarrow	The version number of the Surface Reflectance file.
<y></y>	\rightarrow	The revision number of the Surface Reflectance file.
s <yyyymmddhhmmssf></yyyymmddhhmmssf>	\rightarrow	The start timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.
e <yyyymmddhhmmssf< td=""><td>\rightarrow</td><td>The end timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.</td></yyyymmddhhmmssf<>	\rightarrow	The end timestamp for the granule in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2- digit minute, 2-digit second, and 1-digit microseconds format.

2.3. Input Ancillary Data

Dynamic Ancillary Data

Dynamic ancillary data is not used for the LAI product.

Static Ancillary Data

There are several static ancillary datasets used to generate the LAI products. All static ancillary datasets for LAI must be located in the following directory:

• \$home/CODE/leaf-area-index/ancillary_data

3. Performance

3.1. Product Testing

3.1.1. Test Data Description

Test cases are provided with each algorithm package for product verification before transition to operations. The test cases provide input, static ancillary data, and other resulting product datasets for verification. All specified requirements must be met during testing. Only after end users are satisfied that all the requirements are met will the LAI algorithm package's products be transitioned into operations.

3.1.2. Unit Test Plans

Testing of the algorithm package's products occurs with each update to the algorithm package. The science teams, who develop the products, test them for accuracy and validation. The STAR group tests the algorithm and scripts to ensure that requirements are met. Then, operations must test the products to make sure that they run successfully on their systems. If there are problems in any one of the testing procedures, then the relevant groups must work together to correct any issues.

3.2. Product Accuracy

- 3.2.1. Test Results
- **3.2.2. Product Accuracy**

3.3. Product Quality Output

Details about program execution can be found in the log files produced by the algorithm package. Each run produces multiple logs that can be used to determine if the run was successful or if there were errors.

Details about product quality can be found in the **quality_information** variable contained within the output files (see **Error! Reference source not found.**).

3.4. External Product Tools

There are no external product tools associated with the LAI algorithm package. External users can choose their own preferred tools to display and analyze these output files.

3.5. Output Files

LAI final products are available on PDA for user subscription. The data retention time on PDA is the standard 7 days.

3.5.1. Product Monitoring and Visualization

Product quality is monitored using the NCCF Product Monitoring Tool at https://nccf-prod-dashboard.nccf.nesdis.noaa.gov/mtool/index.html.

Users can use this page to monitor summaries of the LAI quality based on parameter thresholds determined by the PAL.

The NCCF Products Visualization Page is located at https://www.ospo.noaa.gov/products/land/vegetation/lai/.

LAI products are generated weekly.

4. Product Status

4.1. Operations Documentation

Leaf Area Index (LAI) System Maintenance Manual (v1.0, March 2025)

Leaf Area Index (LAI) Algorithm Theoretical Basis Document (v1.0, February 2023)

Leaf Area Index (LAI) Delivery Documents

- Readme (v1-1, June 2024)
- Delivery Memo (v1-2, January 2025)
- Production Rules (v1-1, June 2024)

4.2. Maintenance History

END OF DOCUMENT

5. Acronyms

Acronym	Definition
ASSISTT	Algorithm Scientific Software Integration and System Transition Team
ATBD	Algorithm Theoretical Basis Document
CCAP	Cloud Containerized Algorithm Package
DOC	Department of Commerce
ERT	Earth Resources Technology, Inc.
ESPC	Environmental Satellite Processing Center
EUM	External Users' Manual
GDAS	Global Data Assimilation System
GEOV2	Geoland2
GFS	Global Forecast System
GLASS	Global Land Surface Satellite
JPSS	Joint Polar Satellite System
LAI	Leaf Area Index
MODIS	Moderate-resolution Imaging Spectroradiometer
NCCF	NESDIS Common Cloud Framework
NCEP	National Centers for Environmental Prediction
NDAS	North American Model Data Assimilation System
NESDIS	National Environmental Satellite, Data, and Information Service
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration
OCS	Office of Common Services
OMS	Operations, Maintenance, and Sustainment
OSPO	Office of Satellite and Product Operations
PAL	Product Area Lead
PDA	Product Distribution and Access
PIB	Product Implementation Branch
PPM	Project Portfolio Management
QA	Quality Assurance
SMM	System Maintenance Manual
S-NPP	Suomi National Polar-orbiting Partnership
SNR	Signal-to-Noise Ratio
SR	Surface Reflectance
STAR	Center for Satellite Applications and Research
TSGF	Temporal Smoothing and Gap-Filling
V&V	Verification and Validation
VIIRS	Visible Infrared Imaging Radiometer Suite